Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures.
نویسندگان
چکیده
In this paper, we bring forward an effective strategy, solvothermal postsynthesis, to prepare ordered mesoporous silica materials with highly branched channels. Structural characterizations indicate that the titled mesoporous materials basically have the cubic double gyroidal (space group Ia-3d) structure with small fraction of distortions. The mesopore sizes and surface areas can be up to 8.8 nm and 540 m2/g, respectively, when microwave digestion is employed to remove the organic templates. A phase transition model is proposed, and possible explanations for the successful phase transition are elucidated. The results show that the flexible inorganic framework, high content of organic matrix, and nonpenetration of poly(ethylene oxide) segments may facilitate the structural evolution. This new synthetic strategy can also be extended to the preparation of other double gyroidal silica-based mesoporous materials, such as metal and nonmetal ions doped silica and organo-functionalized silica materials. The prepared 3D mesoporous silica can be further utilized to fabricate various ordered crystalline gyroidal metal oxide "negatives". The mesorelief "negatives" (Co3O4 and In2O3 are detailed here) prepared by impregnation and thermolysis procedures exhibit undisplaced, displaced, and uncoupled enantiomeric gyroidal subframeworks. It has been found that the amount of metal oxide precursors (hydrated metal nitrates) greatly influence the (sub)framework structure and single crystallinity of the mesorelief metal oxide particles. The single crystalline gyroidal metal oxides are ordered both at mesoscale and atomic scale. However, these orders are not commensurate with each other.
منابع مشابه
Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides
Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite h...
متن کاملSynthesis and characterization of amine functionalized mesoporous magnetite nanoparticles having environmental applications
In this study, amino functional groups were chemically bonded to the surface of newly synthesized KIT-6 mesoporous magnetite nanoparticles (MMNPs) by post-toluene reflux synthesis method. This method treats calcined mesoporous nanoparticles with the functional organosilanes. Physical and chemical structures of the synthesized mesoporous magnetite nanoparticle...
متن کاملSynthesis and Characterization of a Novel Nanoporous Composite Based on Elemental Sulfur and Graphitic Mesoporous Carbon
A novel sulfur nanocomposite was fabricated based on graphitic mesoporous carbon.The graphitic mesoporous carbon was synthesized using sucrose as carbon precursor, nano CaCO3 as a hard template and nickel nitrate as graphitization catalyst. The structural properties of the prepared material were characterized using powder X-Ray Diffraction (XRD), N2-adsorption/de...
متن کاملFacile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System
The present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)—as a nonsteroidal anti-inflammatory drug—into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB...
متن کاملFacile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System
The present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)—as a nonsteroidal anti-inflammatory drug—into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 3 شماره
صفحات -
تاریخ انتشار 2004